Source code for pysindy.pysindy

import warnings
from itertools import product
from typing import Collection
from typing import Sequence

import numpy as np
from scipy.integrate import odeint
from scipy.integrate import solve_ivp
from scipy.interpolate import interp1d
from scipy.linalg import LinAlgWarning
from sklearn import __version__
from sklearn.base import BaseEstimator
from sklearn.exceptions import ConvergenceWarning
from sklearn.metrics import r2_score
from sklearn.pipeline import Pipeline
from sklearn.utils.validation import check_is_fitted

from .differentiation import FiniteDifference
from .feature_library import PolynomialLibrary
from .optimizers import EnsembleOptimizer
from .optimizers import SINDyOptimizer

try:  # Waiting on PEP 690 to lazy import CVXPY
    from .optimizers import SINDyPI

    sindy_pi_flag = True
except ImportError:
    sindy_pi_flag = False
from .optimizers import STLSQ
from .utils import AxesArray
from .utils import comprehend_axes
from .utils import concat_sample_axis
from .utils import drop_nan_samples
from .utils import equations
from .utils import SampleConcatter
from .utils import validate_control_variables
from .utils import validate_input
from .utils import validate_no_reshape


[docs]class SINDy(BaseEstimator): """ Sparse Identification of Nonlinear Dynamical Systems (SINDy). Uses sparse regression to learn a dynamical systems model from measurement data. Parameters ---------- optimizer : optimizer object, optional Optimization method used to fit the SINDy model. This must be a class extending :class:`pysindy.optimizers.BaseOptimizer`. The default is :class:`STLSQ`. feature_library : feature library object, optional Feature library object used to specify candidate right-hand side features. This must be a class extending :class:`pysindy.feature_library.base.BaseFeatureLibrary`. The default option is :class:`PolynomialLibrary`. differentiation_method : differentiation object, optional Method for differentiating the data. This must be a class extending :class:`pysindy.differentiation_methods.base.BaseDifferentiation` class. The default option is centered difference. feature_names : list of string, length n_input_features, optional Names for the input features (e.g. ``['x', 'y', 'z']``). If None, will use ``['x0', 'x1', ...]``. t_default : float, optional (default 1) Default value for the time step. discrete_time : boolean, optional (default False) If True, dynamical system is treated as a map. Rather than predicting derivatives, the right hand side functions step the system forward by one time step. If False, dynamical system is assumed to be a flow (right-hand side functions predict continuous time derivatives). Attributes ---------- model : ``sklearn.multioutput.MultiOutputRegressor`` object The fitted SINDy model. n_input_features_ : int The total number of input features. n_output_features_ : int The total number of output features. This number is a function of ``self.n_input_features`` and the feature library being used. n_control_features_ : int The total number of control input features. Examples -------- >>> import numpy as np >>> from scipy.integrate import solve_ivp >>> from pysindy import SINDy >>> lorenz = lambda z,t : [10*(z[1] - z[0]), >>> z[0]*(28 - z[2]) - z[1], >>> z[0]*z[1] - 8/3*z[2]] >>> t = np.arange(0,2,.002) >>> x = solve_ivp(lorenz, [-8,8,27], t) >>> model = SINDy() >>> model.fit(x, t=t[1]-t[0]) >>> model.print() x0' = -10.000 1 + 10.000 x0 x1' = 27.993 1 + -0.999 x0 + -1.000 1 x1 x2' = -2.666 x1 + 1.000 1 x0 >>> model.coefficients() array([[ 0. , 0. , 0. ], [-9.99969193, 27.99344519, 0. ], [ 9.99961547, -0.99905338, 0. ], [ 0. , 0. , -2.66645651], [ 0. , 0. , 0. ], [ 0. , 0. , 0.99990257], [ 0. , -0.99980268, 0. ], [ 0. , 0. , 0. ], [ 0. , 0. , 0. ], [ 0. , 0. , 0. ]]) >>> model.score(x, t=t[1]-t[0]) 0.999999985520653 >>> import numpy as np >>> from scipy.integrate import solve_ivp >>> from pysindy import SINDy >>> u = lambda t : np.sin(2 * t) >>> lorenz_c = lambda z,t : [ 10 * (z[1] - z[0]) + u(t) ** 2, z[0] * (28 - z[2]) - z[1], z[0] * z[1] - 8 / 3 * z[2], ] >>> t = np.arange(0,2,0.002) >>> x = solve_ivp(lorenz_c, [-8,8,27], t) >>> u_eval = u(t) >>> model = SINDy() >>> model.fit(x, u_eval, t=t[1]-t[0]) >>> model.print() x0' = -10.000 x0 + 10.000 x1 + 1.001 u0^2 x1' = 27.994 x0 + -0.999 x1 + -1.000 x0 x2 x2' = -2.666 x2 + 1.000 x0 x1 >>> model.coefficients() array([[ 0. , -9.99969851, 9.99958359, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 1.00120331], [ 0. , 27.9935177 , -0.99906375, 0. , 0. , 0. , 0. , -0.99980455, 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , -2.666437 , 0. , 0. , 0.99990137, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ]]) >>> model.score(x, u_eval, t=t[1]-t[0]) 0.9999999855414495 """ def __init__( self, optimizer=None, feature_library=None, differentiation_method=None, feature_names=None, t_default=1, discrete_time=False, ): if optimizer is None: optimizer = STLSQ() self.optimizer = optimizer if feature_library is None: feature_library = PolynomialLibrary() self.feature_library = feature_library if differentiation_method is None: differentiation_method = FiniteDifference(axis=-2) self.differentiation_method = differentiation_method if not isinstance(t_default, float) and not isinstance(t_default, int): raise ValueError("t_default must be a positive number") elif t_default <= 0: raise ValueError("t_default must be a positive number") else: self.t_default = t_default self.feature_names = feature_names self.discrete_time = discrete_time
[docs] def fit( self, x, t=None, x_dot=None, u=None, multiple_trajectories=False, unbias=True, quiet=False, ensemble=False, library_ensemble=False, replace=True, n_candidates_to_drop=1, n_subset=None, n_models=None, ensemble_aggregator=None, ): """ Fit a SINDy model. Parameters ---------- x: array-like or list of array-like, shape (n_samples, n_input_features) Training data. If training data contains multiple trajectories, x should be a list containing data for each trajectory. Individual trajectories may contain different numbers of samples. t: float, numpy array of shape (n_samples,), or list of numpy arrays, optional \ (default None) If t is a float, it specifies the timestep between each sample. If array-like, it specifies the time at which each sample was collected. In this case the values in t must be strictly increasing. In the case of multi-trajectory training data, t may also be a list of arrays containing the collection times for each individual trajectory. If None, the default time step ``t_default`` will be used. x_dot: array-like or list of array-like, shape (n_samples, n_input_features), \ optional (default None) Optional pre-computed derivatives of the training data. If not provided, the time derivatives of the training data will be computed using the specified differentiation method. If x_dot is provided, it must match the shape of the training data and these values will be used as the time derivatives. u: array-like or list of array-like, shape (n_samples, n_control_features), \ optional (default None) Control variables/inputs. Include this variable to use sparse identification for nonlinear dynamical systems for control (SINDYc). If training data contains multiple trajectories (i.e. if x is a list of array-like), then u should be a list containing control variable data for each trajectory. Individual trajectories may contain different numbers of samples. multiple_trajectories: boolean, optional, (default False) Whether or not the training data includes multiple trajectories. If True, the training data must be a list of arrays containing data for each trajectory. If False, the training data must be a single array. unbias: boolean, optional (default True) Whether to perform an extra step of unregularized linear regression to unbias the coefficients for the identified support. If the optimizer (``self.optimizer``) applies any type of regularization, that regularization may bias coefficients toward particular values, improving the conditioning of the problem but harming the quality of the fit. Setting ``unbias==True`` enables an extra step wherein unregularized linear regression is applied, but only for the coefficients in the support identified by the optimizer. This helps to remove the bias introduced by regularization. quiet: boolean, optional (default False) Whether or not to suppress warnings during model fitting. ensemble : boolean, optional (default False) This parameter is used to allow for "ensembling", i.e. the generation of many SINDy models (n_models) by choosing a random temporal subset of the input data (n_subset) for each sparse regression. This often improves robustness because averages (bagging) or medians (bragging) of all the models are usually quite high-performing. The user can also generate "distributions" of many models, and calculate how often certain library terms are included in a model. library_ensemble : boolean, optional (default False) This parameter is used to allow for "library ensembling", i.e. the generation of many SINDy models (n_models) by choosing a random subset of the candidate library terms to truncate. So, n_models are generated by solving n_models sparse regression problems on these "reduced" libraries. Once again, this often improves robustness because averages (bagging) or medians (bragging) of all the models are usually quite high-performing. The user can also generate "distributions" of many models, and calculate how often certain library terms are included in a model. replace : boolean, optional (default True) If ensemble true, whether or not to time sample with replacement. n_candidates_to_drop : int, optional (default 1) Number of candidate terms in the feature library to drop during library ensembling. n_subset : int, optional (default len(time base)) Number of time points to use for ensemble n_models : int, optional (default 20) Number of models to generate via ensemble ensemble_aggregator : callable, optional (default numpy.median) Method to aggregate model coefficients across different samples. This method argument is only used if ``ensemble`` or ``library_ensemble`` is True. The method should take in a list of 2D arrays and return a 2D array of the same shape as the arrays in the list. Example: :code:`lambda x: np.median(x, axis=0)` Returns ------- self: a fitted :class:`SINDy` instance """ if ensemble or library_ensemble: # DeprecationWarning are ignored by default... warnings.warn( "Ensembling arguments are deprecated." "Use the EnsembleOptimizer class instead.", UserWarning, ) if t is None: t = self.t_default if not multiple_trajectories: x, t, x_dot, u = _adapt_to_multiple_trajectories(x, t, x_dot, u) multiple_trajectories = True elif ( not isinstance(x, Sequence) or (not isinstance(x_dot, Sequence) and x_dot is not None) or (not isinstance(u, Sequence) and u is not None) ): raise TypeError( "If multiple trajectories set, x and if included," "x_dot and u, must be Sequences" ) x, x_dot, u = _comprehend_and_validate_inputs( x, t, x_dot, u, self.feature_library ) if (n_models is not None) and n_models <= 0: raise ValueError("n_models must be a positive integer") if (n_subset is not None) and n_subset <= 0: raise ValueError("n_subset must be a positive integer") if u is None: self.n_control_features_ = 0 else: u = validate_control_variables( x, u, trim_last_point=(self.discrete_time and x_dot is None), ) self.n_control_features_ = u[0].shape[u[0].ax_coord] x, x_dot = self._process_multiple_trajectories(x, t, x_dot) # Set ensemble variables self.ensemble = ensemble self.library_ensemble = library_ensemble # Append control variables if u is not None: x = [np.concatenate((xi, ui), axis=xi.ax_coord) for xi, ui in zip(x, u)] if hasattr(self.optimizer, "unbias"): unbias = self.optimizer.unbias # backwards compatibility for ensemble options if ensemble and n_subset is None: n_subset = x[0].shape[x[0].ax_time] if library_ensemble: self.feature_library.library_ensemble = False if ensemble and not library_ensemble: if n_subset is None: n_sample_tot = np.sum([xi.shape[xi.ax_time] for xi in x]) n_subset = int(0.6 * n_sample_tot) optimizer = SINDyOptimizer( EnsembleOptimizer( self.optimizer, bagging=True, n_subset=n_subset, n_models=n_models, ), unbias=unbias, ) self.coef_list = optimizer.optimizer.coef_list elif not ensemble and library_ensemble: optimizer = SINDyOptimizer( EnsembleOptimizer( self.optimizer, library_ensemble=True, n_models=n_models, ), unbias=unbias, ) self.coef_list = optimizer.optimizer.coef_list elif ensemble and library_ensemble: if n_subset is None: n_sample_tot = np.sum([xi.shape[xi.ax_time] for xi in x]) n_subset = int(0.6 * n_sample_tot) optimizer = SINDyOptimizer( EnsembleOptimizer( self.optimizer, bagging=True, n_subset=n_subset, n_models=n_models, library_ensemble=True, ), unbias=unbias, ) self.coef_list = optimizer.optimizer.coef_list else: optimizer = SINDyOptimizer(self.optimizer, unbias=unbias) steps = [ ("features", self.feature_library), ("shaping", SampleConcatter()), ("model", optimizer), ] x_dot = concat_sample_axis(x_dot) self.model = Pipeline(steps) action = "ignore" if quiet else "default" with warnings.catch_warnings(): warnings.filterwarnings(action, category=ConvergenceWarning) warnings.filterwarnings(action, category=LinAlgWarning) warnings.filterwarnings(action, category=UserWarning) self.model.fit(x, x_dot) # New version of sklearn changes attribute name if float(__version__[:3]) >= 1.0: self.n_features_in_ = self.model.steps[0][1].n_features_in_ n_input_features = self.model.steps[0][1].n_features_in_ else: self.n_input_features_ = self.model.steps[0][1].n_input_features_ n_input_features = self.model.steps[0][1].n_input_features_ self.n_output_features_ = self.model.steps[0][1].n_output_features_ if self.feature_names is None: feature_names = [] for i in range(n_input_features - self.n_control_features_): feature_names.append("x" + str(i)) for i in range(self.n_control_features_): feature_names.append("u" + str(i)) self.feature_names = feature_names return self
[docs] def predict(self, x, u=None, multiple_trajectories=False): """ Predict the time derivatives using the SINDy model. Parameters ---------- x: array-like or list of array-like, shape (n_samples, n_input_features) Samples. u: array-like or list of array-like, shape(n_samples, n_control_features), \ (default None) Control variables. If ``multiple_trajectories==True`` then u must be a list of control variable data from each trajectory. If the model was fit with control variables then u is not optional. multiple_trajectories: boolean, optional (default False) If True, x contains multiple trajectories and must be a list of data from each trajectory. If False, x is a single trajectory. Returns ------- x_dot: array-like or list of array-like, shape (n_samples, n_input_features) Predicted time derivatives """ if not multiple_trajectories: x, _, _, u = _adapt_to_multiple_trajectories(x, None, None, u) x, _, u = _comprehend_and_validate_inputs(x, 1, None, u, self.feature_library) check_is_fitted(self, "model") if self.n_control_features_ > 0 and u is None: raise TypeError("Model was fit using control variables, so u is required") if self.n_control_features_ == 0 and u is not None: warnings.warn( "Control variables u were ignored because control variables were" " not used when the model was fit" ) u = None if self.discrete_time: x = [validate_input(xi) for xi in x] if u is not None: u = validate_control_variables(x, u) x = [np.concatenate((xi, ui), axis=xi.ax_coord) for xi, ui in zip(x, u)] result = [self.model.predict([xi]) for xi in x] result = [ self.feature_library.reshape_samples_to_spatial_grid(pred) for pred in result ] # Kept for backwards compatibility. if not multiple_trajectories: return result[0] return result
[docs] def equations(self, precision=3): """ Get the right hand sides of the SINDy model equations. Parameters ---------- precision: int, optional (default 3) Number of decimal points to include for each coefficient in the equation. Returns ------- equations: list of strings List of strings representing the SINDy model equations for each input feature. """ check_is_fitted(self, "model") if self.discrete_time: base_feature_names = [f + "[k]" for f in self.feature_names] else: base_feature_names = self.feature_names return equations( self.model, input_features=base_feature_names, precision=precision, )
[docs] def print(self, lhs=None, precision=3): """Print the SINDy model equations. Parameters ---------- lhs: list of strings, optional (default None) List of variables to print on the left-hand sides of the learned equations. By default :code:`self.input_features` are used. precision: int, optional (default 3) Precision to be used when printing out model coefficients. """ eqns = self.equations(precision) if sindy_pi_flag and isinstance(self.optimizer, SINDyPI): feature_names = self.get_feature_names() else: feature_names = self.feature_names for i, eqn in enumerate(eqns): if self.discrete_time: names = "(" + feature_names[i] + ")" print(names + "[k+1] = " + eqn) elif lhs is None: if not sindy_pi_flag or not isinstance(self.optimizer, SINDyPI): names = "(" + feature_names[i] + ")" print(names + "' = " + eqn) else: names = feature_names[i] print(names + " = " + eqn) else: print(lhs[i] + " = " + eqn)
[docs] def score( self, x, t=None, x_dot=None, u=None, multiple_trajectories=False, metric=r2_score, **metric_kws ): """ Returns a score for the time derivative prediction produced by the model. Parameters ---------- x: array-like or list of array-like, shape (n_samples, n_input_features) Samples from which to make predictions. t: float, numpy array of shape (n_samples,), or list of numpy arrays, optional \ (default None) Time step between samples or array of collection times. Optional, used to compute the time derivatives of the samples if x_dot is not provided. If None, the default time step ``t_default`` will be used. x_dot: array-like or list of array-like, shape (n_samples, n_input_features), \ optional (default None) Optional pre-computed derivatives of the samples. If provided, these values will be used to compute the score. If not provided, the time derivatives of the training data will be computed using the specified differentiation method. u: array-like or list of array-like, shape(n_samples, n_control_features), \ optional (default None) Control variables. If ``multiple_trajectories==True`` then u must be a list of control variable data from each trajectory. If the model was fit with control variables then u is not optional. multiple_trajectories: boolean, optional (default False) If True, x contains multiple trajectories and must be a list of data from each trajectory. If False, x is a single trajectory. metric: callable, optional Metric function with which to score the prediction. Default is the R^2 coefficient of determination. See `Scikit-learn \ <https://scikit-learn.org/stable/modules/model_evaluation.html>`_ for more options. metric_kws: dict, optional Optional keyword arguments to pass to the metric function. Returns ------- score: float Metric function value for the model prediction of x_dot. """ if t is None: t = self.t_default if not multiple_trajectories: x, t, x_dot, u = _adapt_to_multiple_trajectories(x, t, x_dot, u) multiple_trajectories = True x, x_dot, u = _comprehend_and_validate_inputs( x, t, x_dot, u, self.feature_library ) x_dot_predict = self.predict(x, u, multiple_trajectories=multiple_trajectories) if self.discrete_time and x_dot is None: x_dot_predict = [xd[:-1] for xd in x_dot_predict] x, x_dot = self._process_multiple_trajectories(x, t, x_dot) x_dot = concat_sample_axis(x_dot) x_dot_predict = concat_sample_axis(x_dot_predict) x_dot, x_dot_predict = drop_nan_samples(x_dot, x_dot_predict) return metric(x_dot, x_dot_predict, **metric_kws)
def _process_multiple_trajectories(self, x, t, x_dot): """ Calculate derivatives of input data, iterating through trajectories. Parameters ---------- x: list of np.ndarray List of measurements, with each entry corresponding to a different trajectory. t: list of np.ndarray or int List of time points for different trajectories. If a list of ints is passed, each entry is assumed to be the timestep for the corresponding trajectory in x. If np.ndarray is passed, it is used for each trajectory. x_dot: list of np.ndarray List of derivative measurements, with each entry corresponding to a different trajectory. If None, the derivatives will be approximated from x. Returns ------- x_out: np.ndarray or list Validated version of x. If return_array is True, x_out will be an np.ndarray of concatenated trajectories. If False, x_out will be a list. x_dot_out: np.ndarray or list Validated derivative measurements.If return_array is True, x_dot_out will be an np.ndarray of concatenated trajectories. If False, x_out will be a list. """ if x_dot is None: if self.discrete_time: x_dot = [xi[1:] for xi in x] x = [xi[:-1] for xi in x] else: x_dot = [ self.feature_library.calc_trajectory( self.differentiation_method, xi, ti ) for xi, ti in _zip_like_sequence(x, t) ] return x, x_dot
[docs] def differentiate(self, x, t=None, multiple_trajectories=False): """ Apply the model's differentiation method (:code:`self.differentiation_method`) to data. Parameters ---------- x: array-like or list of array-like, shape (n_samples, n_input_features) Data to be differentiated. t: int, numpy array of shape (n_samples,), or list of numpy arrays, optional \ (default None) Time step between samples or array of collection times. If None, the default time step ``t_default`` will be used. multiple_trajectories: boolean, optional (default False) If True, x contains multiple trajectories and must be a list of data from each trajectory. If False, x is a single trajectory. Returns ------- x_dot: array-like or list of array-like, shape (n_samples, n_input_features) Time derivatives computed by using the model's differentiation method """ if t is None: t = self.t_default if self.discrete_time: raise RuntimeError("No differentiation implemented for discrete time model") if not multiple_trajectories: x, t, _, _ = _adapt_to_multiple_trajectories(x, t, None, None) x, _, _ = _comprehend_and_validate_inputs( x, t, None, None, self.feature_library ) result = self._process_multiple_trajectories(x, t, None)[1] if not multiple_trajectories: return result[0] return result
[docs] def coefficients(self): """ Get an array of the coefficients learned by SINDy model. Returns ------- coef: np.ndarray, shape (n_input_features, n_output_features) Learned coefficients of the SINDy model. Equivalent to :math:`\\Xi^\\top` in the literature. """ check_is_fitted(self, "model") return self.model.steps[-1][1].coef_
[docs] def get_feature_names(self): """ Get a list of names of features used by SINDy model. Returns ------- feats: list A list of strings giving the names of the features in the feature library, :code:`self.feature_library`. """ check_is_fitted(self, "model") return self.model.steps[0][1].get_feature_names( input_features=self.feature_names )
[docs] def simulate( self, x0, t, u=None, integrator="solve_ivp", stop_condition=None, interpolator=None, integrator_kws={"method": "LSODA", "rtol": 1e-12, "atol": 1e-12}, interpolator_kws={}, ): """ Simulate the SINDy model forward in time. Parameters ---------- x0: numpy array, size [n_features] Initial condition from which to simulate. t: int or numpy array of size [n_samples] If the model is in continuous time, t must be an array of time points at which to simulate. If the model is in discrete time, t must be an integer indicating how many steps to predict. u: function from R^1 to R^{n_control_features} or list/array, optional \ (default None) Control inputs. If the model is continuous time, i.e. ``self.discrete_time == False``, this function should take in a time and output the values of each of the n_control_features control features as a list or numpy array. Alternatively, if the model is continuous time, ``u`` can also be an array of control inputs at each time step. In this case the array is fit with the interpolator specified by ``interpolator``. If the model is discrete time, i.e. ``self.discrete_time == True``, u should be a list (with ``len(u) == t``) or array (with ``u.shape[0] == 1``) giving the control inputs at each step. integrator: string, optional (default ``solve_ivp``) Function to use to integrate the system. Default is ``scipy.integrate.solve_ivp``. The only options currently supported are solve_ivp and odeint. stop_condition: function object, optional If model is in discrete time, optional function that gives a stopping condition for stepping the simulation forward. interpolator: callable, optional (default ``interp1d``) Function used to interpolate control inputs if ``u`` is an array. Default is ``scipy.interpolate.interp1d``. integrator_kws: dict, optional (default {}) Optional keyword arguments to pass to the integrator interpolator_kws: dict, optional (default {}) Optional keyword arguments to pass to the control input interpolator Returns ------- x: numpy array, shape (n_samples, n_features) Simulation results """ check_is_fitted(self, "model") if u is None and self.n_control_features_ > 0: raise TypeError("Model was fit using control variables, so u is required") if self.discrete_time: if not isinstance(t, int) or t <= 0: raise ValueError( "For discrete time model, t must be an integer (indicating" "the number of steps to predict)" ) if stop_condition is not None: def check_stop_condition(xi): return stop_condition(xi) else: def check_stop_condition(xi): pass # New version of sklearn changes attribute name if float(__version__[:3]) >= 1.0: x = np.zeros((t, self.n_features_in_ - self.n_control_features_)) else: x = np.zeros((t, self.n_input_features_ - self.n_control_features_)) x[0] = x0 if u is None or self.n_control_features_ == 0: if u is not None: warnings.warn( "Control variables u were ignored because control " "variables were not used when the model was fit" ) for i in range(1, t): x[i] = self.predict(x[i - 1 : i]) if check_stop_condition(x[i]): return x[: i + 1] else: for i in range(1, t): x[i] = self.predict(x[i - 1 : i], u=u[i - 1, np.newaxis]) if check_stop_condition(x[i]): return x[: i + 1] return x else: if np.isscalar(t): raise ValueError( "For continuous time model, t must be an array of time" " points at which to simulate" ) if u is None or self.n_control_features_ == 0: if u is not None: warnings.warn( "Control variables u were ignored because control " "variables were not used when the model was fit" ) def rhs(t, x): return self.predict(x[np.newaxis, :])[0] else: if not callable(u): if interpolator is None: u_fun = interp1d( t, u, axis=0, kind="cubic", fill_value="extrapolate" ) else: u_fun = interpolator(t, u, **interpolator_kws) t = t[:-1] warnings.warn( "Last time point dropped in simulation because " "interpolation of control input was used. To avoid " "this, pass in a callable for u." ) else: u_fun = u if u_fun(t[0]).ndim == 1: def rhs(t, x): return self.predict(x[np.newaxis, :], u_fun(t).reshape(1, -1))[ 0 ] else: def rhs(t, x): return self.predict(x[np.newaxis, :], u_fun(t))[0] # Need to hard-code below, because odeint and solve_ivp # have different syntax and integration options. if integrator == "solve_ivp": return ( (solve_ivp(rhs, (t[0], t[-1]), x0, t_eval=t, **integrator_kws)).y ).T elif integrator == "odeint": if integrator_kws.get("method") == "LSODA": integrator_kws = {} return odeint(rhs, x0, t, tfirst=True, **integrator_kws) else: raise ValueError("Integrator not supported, exiting")
@property def complexity(self): """ Complexity of the model measured as the number of nonzero parameters. """ return self.model.steps[-1][1].complexity
def _zip_like_sequence(x, t): """Create an iterable like zip(x, t), but works if t is scalar.""" if isinstance(t, Sequence): return zip(x, t) else: return product(x, [t]) def _adapt_to_multiple_trajectories(x, t, x_dot, u): """Adapt model data not already in multiple_trajectories to that format. Arguments: x: Samples from which to make predictions. t: Time step between samples or array of collection times. x_dot: Pre-computed derivatives of the samples. u: Control variables Returns: Tuple of updated x, t, x_dot, u """ if isinstance(x, Sequence): raise ValueError( "x is a Sequence, but multiple_trajectories not set. " "Did you mean to set multiple trajectories?" ) x = [x] if isinstance(t, Collection): t = [t] if x_dot is not None: x_dot = [x_dot] if u is not None: u = [u] return x, t, x_dot, u def _comprehend_and_validate_inputs(x, t, x_dot, u, feature_library): """Validate input types, reshape arrays, and label axes""" def comprehend_and_validate(arr, t): arr = AxesArray(arr, comprehend_axes(arr)) arr = feature_library.correct_shape(arr) return validate_no_reshape(arr, t) x = [comprehend_and_validate(xi, ti) for xi, ti in _zip_like_sequence(x, t)] if x_dot is not None: x_dot = [ comprehend_and_validate(xdoti, ti) for xdoti, ti in _zip_like_sequence(x_dot, t) ] if u is not None: reshape_control = False for i in range(len(x)): if len(x[i].shape) != len(np.array(u[i]).shape): reshape_control = True if reshape_control: try: shape = np.array(x[0].shape) shape[x[0].ax_coord] = -1 u = [np.reshape(u[i], shape) for i in range(len(x))] except Exception: try: if np.isscalar(u[0]): shape[x[0].ax_coord] = 1 else: shape[x[0].ax_coord] = len(u[0]) u = [np.broadcast_to(u[i], shape) for i in range(len(x))] except Exception: raise ( ValueError( "Could not reshape control input to match the input data." ) ) correct_shape = True for i in range(len(x)): for axis in range(x[i].ndim): if ( axis != x[i].ax_coord and x[i].shape[axis] != np.array(u[i]).shape[axis] ): correct_shape = False if not correct_shape: raise ( ValueError("Could not reshape control input to match the input data.") ) u = [comprehend_and_validate(ui, ti) for ui, ti in _zip_like_sequence(u, t)] return x, x_dot, u